Gold(I) Catalyzed Enantioselective Reactions

Li HUANG Michigan State University November 28, 2007

Outline

- Introduction
- Enantioselective Reactions

• Conclusions

History of Gold Catalysis

Hashmi, A.S. K.; Hutchings, G. J. *Angew. Chem. Int. Ed.* **2006**, *45*, 7896. Burks, R. *Chem. Eng. News.* **2007**, *85*, 87.

Comparison of Metal Prices

http://www.taxfreegold.co.uk/preciousmetalpricesusdollars.html

Au in Periodic Table

1	IA ¹ H ³ Li	IIA ⁴ Be	Periodic Table IIIA IVA VA VIA VIA IIIA IVA VA VIA VIA of the Elements B C N O F Ne							0 2 He 10 Ne								
3	¹¹ Na	¹² Mg	IIIB	IVB	VB	VIB	VIIB		- VII -		IB	IIB	¹³ Al	¹⁴ Si	¹⁵ P	¹⁶ S	¹⁷ CI	¹⁸ Ar
4	¹⁹ K	20 Ca	21 Sc	22 Ti	²³ V	²⁴ Cr	25 Mn	²⁶ Fe	27 Co	28 Ni	29 Cu	³⁰ Zn	³¹ Ga	Ge	33 As	³⁴ Se	³⁵ Br	³⁶ Kr
5	³⁷ Rb	³⁸ Sr	³⁹ Y	40 Zr	41 Nb	42 Mo	43 Tc	⁴⁴ Ru	⁴⁵ Rh	46 Pd	47 Ag	⁴⁸ Cd	49 In	⁵⁰ Sn	51 Sb	52 Te	53 	54 Xe
6	55 Cs	56 Ba	57 *La	72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 TI	⁸² Pb	⁸³ Bi	⁸⁴ Po	85 At	⁸⁶ Rn
7	⁸⁷ Fr	⁸⁸ Ra	⁸⁹ +Ac	104 Rf	¹⁰⁵ Ha	¹⁰⁶ Sg	¹⁰⁷ Ns	¹⁰⁸ Hs	¹⁰⁹ Mt	110 110	111 111	112 112	113 1 1	7	<mark>'9</mark>			
															Α	U		
*	Lanth Series	anide s	58 Ce	⁵⁹ Pr	60 Nd	⁶¹ Pm	62 Sm	⁶³ Eu	Gd	65 Tb	66 Dy	67 Ho	⁶⁸ Er	⁶⁹ Tm	⁷⁰ Yb	⁷¹ Lu		
+	Actini Series	de s	90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	¹⁰⁰ Fm	¹⁰¹ Md	102 No	103 Lr		

Relativistic Effects of Au

Relativistic effects

Any phenomenon resulting from the need to consider velocity as significant relative to the speed of light

Relativistic contraction of *s*, *p* orbitals Relativistic expansion of *d*, *f* orbitals

Au

Consequences of Relativistic Effects

Tolerant of oxygen

Lewis Acidity of Au(I) Species

Preferentially Activating π System

Gorin, D. J.; Toste, F. D. Nature, 2007, 446, 395.

Challenge in Gold(I) Catalyzed Enantioselective Reactions

Au(I) predominately adopts a linear, bicoordinate geometry.

The chiral components would be distant from the substrates.

It is hard to control the enantioselectivity.

Methods to Generate Cationic Au Catalyst

Active species

2
$$LAuCH_3 + HX \longrightarrow LAuX + CH_4$$

Enantioselective Reactions

1,3-Dipolar Cycloaddition

Hydrogenation Reactions

González-Arellano, C.; Corma, A.; Iglesias, M.; Sánchez, F. Chem. Commun. 2005, 3451.

Hydrogenation Reactions

P-Au-Cl

P-Au-Cl

González-Arellano, C.; Corma, A.; Iglesias, M.; Sánchez, F. Chem. Commun. 2005, 3451.

Proposed Mechanism for Hydrogenation

González-Arellano, C.; Corma, A.; Iglesias, M.; Sánchez, F. Chem. Commun. 2005, 3451.

Enantioselective Reactions

1,3-Dipolar Cycloaddition

Catalytic Asymmetric Aldol Reaction

Ito, Y.; Sawamura, M.; Hayashi, T. J. Am. Chem. Soc. 1986, 108, 6405.

Aldol Reaction of Different Aldehydes

Aldehyde	Yield (%)	trans:cis	ee (<i>trans,</i> %)	ee (<i>cis</i> , %)
PhCHO	98	89:11	96	49
MeCHO	100	84:16	72	44
<i>i</i> -PrCHO	99	98:2	92	—
c-HexCHO	95	97:3	90	—
<i>t</i> -BuCHO	100	100:0	97	—
(E)-n-PrCH=CHCHO	83	81:19	84	52

Ito, Y.; Sawamura, M.; Hayashi, T. J. Am. Chem. Soc. 1986, 108, 6405.

Aldol Reaction of Aldehydes with α - isocyanocarboxylates

R	Yield (%)	trans:cis	ee (trans, %)	ee (cis, %)
Н	91	90:10	91	4
Me	95	82:18	92	44
<i>i</i> -Pr	95	50:50	88	48

Ito, Y.; Sawamura, M.; Shirakawa, E.; Hayashizaki, K.; Hayashi, T. Tetrahedron, 1988, 44, 5253.

Aldol Reaction of Different Isocyanocarboxylates

R	Yield (%)	ee (%)
Н	99	52
Me	100	64
Et	89	70
<i>i</i> -Pr	99	71
Ph	75	67

Ito, Y.; Sawamura, M.; Shirakawa, E.; Hayashizaki, K.; Hayashi, T. Tetrahedron Lett. 1988, 29, 235.

Togni, A.; Paster, S. D. J. Org. Chem. 1990, 55, 1649.

Internal Chiral Cooperativity in the Ligands

Togni, A.; Paster, S. D. J. Org. Chem. 1990, 55, 1649.

Togni, A.; Paster, S. D. J. Org. Chem. 1990, 55, 1649.

Transition State

Togni, A.; Paster, S. D. J. Org. Chem. **1990**, 55, 1649.

Transition State for Aldol Reaction

Togni, A.; Paster, S. D. J. Org. Chem. 1990, 55, 1649.

Enantioselective Reactions

1,3-Dipolar Cycloaddition

Melhado, A. D.; Luparia, M.; Toste, F. D. J. Am. Chem. Soc. 2007, 129, 12638.

Substrate Scope for Cycloaddition

R	Ar	Yield (%)	ee (%)
Me	<i>p</i> -MeO-C ₆ H ₄	77	95
Me	p-Br-C ₆ H ₄	75	93
Me	p-CI-C ₆ H ₄	72	92
Me	$p-NO_2-C_6H_4$	98	91
Me	o-Me-C ₆ H ₄	73	86
Н	Ph	84	81
Allyl	Ph	86	87
Bn	Ph	71	68
Ph	Ph	35	78

Melhado, A. D.; Luparia, M.; Toste, F. D. J. Am. Chem. Soc. 2007, 129, 12638.

Cycloaddition with Acyclic Alkenes

X	time (h)	Yield (%)	ee (%)	
CO ₂ <i>t</i> -Bu	24	56	99	
CO ₂ Et	14	66	90	
CO ₂ Me	14	89	93	

Melhado, A. D.; Luparia, M.; Toste, F. D. J. Am. Chem. Soc. 2007, 129, 12638.

Mechanism for 1,3-Dipolar Cycloaddtion

Melhado, A. D.; Luparia, M.; Toste, F. D. J. Am. Chem. Soc. 2007, 129, 12638.

Enantioselective Reactions

1,3-Dipolar Cycloaddition

Olefin Cyclopropanation Reaction

Johansson, M. J.; Gorin, D. J.; Staben, S. T. Toste, F. D. J. Am. Chem. Soc. 2005, 127, 18002.

Olefin Cyclopropanation

R	Yield (%)	ee (%)
Me	72	60
Ph	73	68
<i>t</i> -Bu	70	81

R

С

Johansson, M. J.; Gorin, D. J.; Staben, S. T.; Toste, F. D. J. Am. Chem. Soc. 2005, 127, 18002.

Mechanism for Cyclopropanation

Johansson, M. J.; Gorin, D. J.; Staben, S.T.; Toste, F. D. J. Am. Chem. Soc. 2005, 127, 18002.

Mechanism for Diastereoselectivity

Johansson, M. J.; Gorin, D. J.; Staben, S. T.; Toste, F.D. J. Am. Chem. Soc. 2005, 127, 18002.

Enantioselective Reactions

1,3-Dipolar Cycloaddition

Classification for Intramolecular Hydrofunctionalization

Funtional Groups 1

Functional Groups 2

—он —соон

-NHR

Catalysts for Cyclization of Enynes

Muñoz, M. P.; Adrio, J.; Carretero, J. C.; Echavarren, A. M. Organometallics, 2005, 24, 1293.

Regioselectivity for Cyclization

Muñoz, M. P.; Adrio, J.; Carretero, J. C.; Echavarren, A. M. Organometallics, 2005, 24, 1293.

Mechanism for the Formation of Products

Classification for Intramolecular Hydrofunctionalization

Hydroalkylation of Allenes

Tarselli, M. A.; Chianese, A. R.; Lee, S. J.; Gagné, M. R. Angew. Chem. Int. Ed. 2007, 46, 6670.

Counterion Effect in the Reaction

AgX	a:b	ee (a, %)
AgNTf ₂	4:1	65
$AgSbF_6$	4:3	57
AgOTs	10:1	50
$AgPF_6$	9:1	65
AgOTf	4:1	72

Tarselli, M. A.; Chianese, A. R.; Lee, S. J.; Gagné, M. R. Angew. Chem. Int. Ed. 2007, 46, 6670.

Substrate Scope for Hydroalkylation

Tarselli, M. A.; Chianese, A. R.; Lee, S. J.; Gagné, M. R. Angew. Chem. Int. Ed. 2007, 46, 6670.

Hydroarylation of Allenes

Liu, C.; Widenhoefer, R. A. Org. Lett. 2007, 9, 1935.

Substrate Scope for Hydroarylation

Liu, C.; Widenhoefer, R. A. Org. Lett. 2007, 9, 1935.

Intramolecular Hydroalkoxylation

Zhang, Z.; Widenhoefer, R.A. Angew. Chem. Int. Ed. 2007, 46, 283.

Intramolecular Hydroalkoxylation

Zhang, Z.; Widenhoefer, R.A. Angew. Chem. Int. Ed. 2007, 46, 283.

Intramolecular Hydroalkoxylation

Zhang, Z.; Widenhoefer, R.A. Angew. Chem. Int. Ed. 2007, 46, 283.

Proposed Mechanism

Zhang, Z.; Widenhoefer, R.A. Angew. Chem. Int. Ed. 2007, 46, 283.

Counteranion Effect in Hydroamination

LaLonde, R. L.; Sherry, B. D.; Kang, E. J.; Toste, F. D. J. Am. Chem. Soc. 2007, 129, 2452.

LaLonde, R. L.; Sherry, B. D.; Kang, E. J.; Toste, F. D. J. Am. Chem. Soc. 2007, 129, 2452.

Substrate Scope for Hydroamination

LaLonde, R. L.; Sherry, B. D.; Kang, E. J.; Toste, F. D. J. Am. Chem. Soc. 2007, 129, 2452.

Substrate Scope for Hydroamination

LaLonde, R. L.; Sherry, B. D.; Kang, E. J.; Toste, F. D. J. Am. Chem. Soc. 2007, 129, 2452.

Chirality in Active Species

Chiral Anion Directed Hydroalkoxylation

Au(I) Complex	X	Yield (%)	ee (%)
Ph ₃ PAuCl	(<i>R</i>)- 3	89	48
(5 mol%)			
(Ph ₂ MeP) ₂ (AuCl) ₂ (2.5 mol%)	(<i>R</i>)- 3	76	65

Screening for Solvents

Solvent	Yield (%)	ee (%)
Nitromethane	60	18
Acetone	71	37
Dichloromethane	76	65
Tetrahydrofuran	83	76
Benzene	90	97

Substrate Scope for Hydroalkoxylation

Matched Case for Hydroalkoxylation

Hydroamination Using Chiral Ligands

LaLonde, R. L.; Sherry, B. D.; Kang, E. J.; Toste, F. D. J. Am. Chem. Soc. 2007, 129, 2452.

Hydroamination Using Chiral Counterion

Hamilton, G. L.; Kang, E. J.; Mba, M.; Toste, F. D. Science, 2007, 317, 496.

Matched and Mismatched Case in Hydrocarboxylation

Benzene

L(AuCI)₂ (2.5 mol%)

AgX (5 mol%)

L	X	Yield (%)	ee (%)
(<i>R</i>)- 4	4-(NO ₂)-C ₆ H ₃ -COO [⊖]	80	-38
(Ph ₂ MeP) ₂	(R)- 3	89	12
(S)- 4	(<i>R</i>)- 3	88	82
(R)- 4	(R)- 3	91	-3

Potentials of Chiral Counterion Strategy

Conclusions

- Gold(I) catalysts are superb Lewis acids for activation of alkynes.
- Several enantioselective reactions catalyzed by gold(I) catalysts have been reported.

In the future,

- More enantioselective reactions could be found to be catalyzed by gold(I) species.
- Work should be done in understanding the mechanism of the enantioselective reaction.

Acknowledgement

Prof. Wulff Prof. Jackson Prof. Walker

Zhenjie, Aman, Yong, Dima, Anil, Munmun Zhensheng, Nilanjina, Alex, Kostas, Victor